基于局部光谱特征的人脸识别系统的设计

基于局部光谱特征的人脸识别系统的设计(任务书,开题报告,外文翻译,论文15000字)
摘 要
在人脸识别技术领域的应用范围内,单人样本的人脸识别问题已经受到越来越多的关注。然而,由于每个人只有一个训练图像可用,并且面部图像可能具有大的外观变化,所以如何实现高识别精度仍是一项具有挑战性的工作。本文提出一种更准确的基于局部光谱特征的人脸识别方法,用以解决单人样本问题。在所提出的算法中,首先提取多分辨率局部光谱特征以表征面部图像放大训练集,然后基于每个局部区域的光谱特征构建一个较弱分类器。从较弱分类器可以观察出更好的图像结果,再采用分类委员会(CCL)的策略来组合从不同的局部光谱特征获得的结果。除此之外,使用Matlab软件进行仿真能有效提高循环处理图片的速度,实验结果也表明基于局部光谱特征的人脸识别的方法具有可行性和有效性。
关键词:单人样本问题; 局部光谱; 分类委员会; Matlab
Abstract
Face recognition for the one-sample-per-person problem has received increasing attention owing to its wide range of potential applications. However, since only one training image is available for each person, and the face images may have large appearance variations, how to achieve a high recognition accuracy is still a challenging work. In this paper, we propose a more accurate local spectral feature based face recognition approach for the one-sample-per-person problem. In the proposed algorithm, multi-resolution local spectral features are first extracted to represent the face images to enlarge the train-ing set. A weaker classifier is then constructed based on the spectral features of each local region. Since a good diversity is observed for the outputs of the weaker classifiers, a strategy of classifier committee learning is adopted to combine the results obtained from different local spectral features. Moreover, inspired by the fact that the iterations are completely independent of each other, a scheme of multiple worker based parallel computing is designed to improve the loop speed by distributing iterations to the MATLAB workers simultaneously. Experimental results on the standard databases demonstrate the feasibility and effectiveness of the proposed method. [资料来源:http://Doc163.com]
Key Words: one-sample-per-person problem; multi-resolution local spectral features; classifier committee; matlabRecord
[资料来源:http://www.doc163.com]



目录
摘 要 I
ABSTRACT II
第一章 绪 论 5
1.1 背景和意义 5
1.2 主要方法和流程 6
1.3 本论文的主要内容 6
1.4 本论文的结构安排 7
第二章 相关技术介绍 8
2.1 单片机主控芯片选择 8
2.2 仿真软件的选择 10
第三章 硬件设计 11
3.1 系统原理框图设计 11
3.2 系统主要元器件 11
3.2.1主控芯片C8051F340 11
3.2.2 ov7670摄像头 12
3.3 系统模块电路设计 13
3.3.1 C8051F340单片机与OV7670摄像头连接设计 13
3.3.2 单片机与PC连接电路设计 14
3.4 硬件设计小结 15
第四章 软件设计 16
4.1主程序算法流程分析 16
4.2子程序算法流程分析 16
4.2.1 视频信号传输模块程序调试 16
4.2.2 单幅图像采集模块程序调试 17
4.2.3 界面显示模块程序调试 18
4.2.4 图像储存模块程序调试 20
4.2.5 人脸识别算法 21 [资料来源:Doc163.com]
4.2.6 识别结果反馈程序设计 25
4.3 软件设计小结 28
第五章 系统调试 29
5.1系统制作与实物测试 29
5.1.1 图像采集模块调试 29
5.1.2相关问题 31
5.2 程序生成与系统调试 32
5.2.1 图像像素调整与路径选择 32
5.2.2 图像采集相关问题 33
5.2.3 识别结果展示 34
5.2.4 人脸识别相关问题 36
总 结 37
参考文献 38
致 谢 39 [资料来源:http://doc163.com]